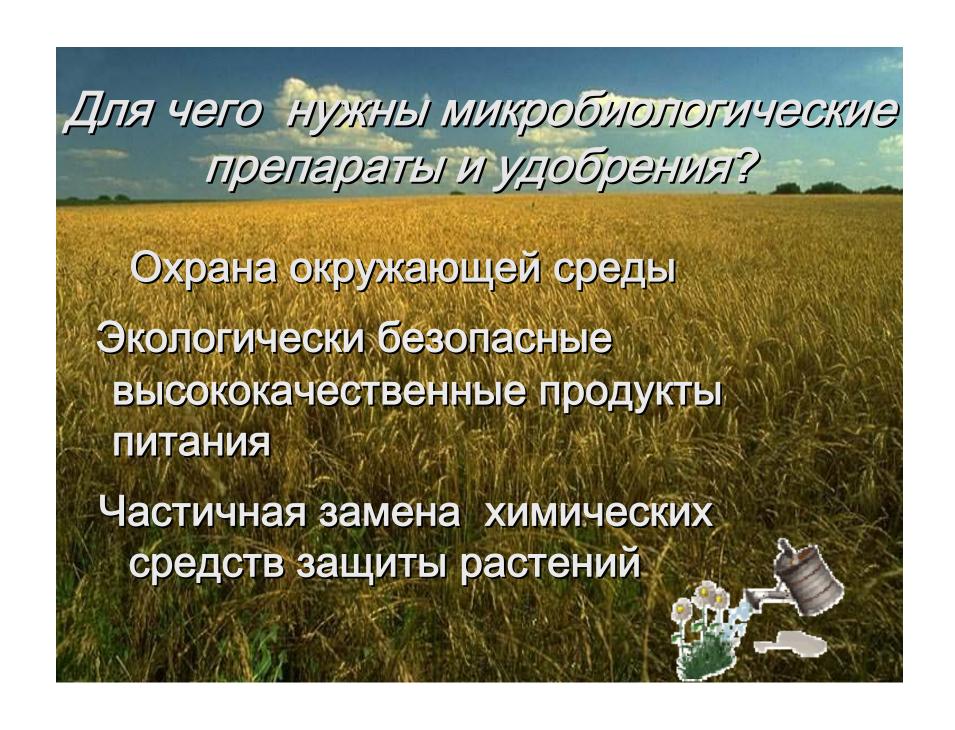

# Перспективные микробиологические препараты и удобрения для современных агротехнологий

В.К.ЧЕБОТАРЬ

Всероссийский НИИ сельскохозяйственной микробиологии


Санкт-Петербург,Россия bisolbi-inter@rambler.ru



Вектор направленности социально-экономической политики АПК России на сегодняшний день меняется в сторону экологизации и стимулирования производства экологически безопасной продукции. Предлагается стимулировать развитие пользующихся большим распространением за рубежом биологических, биодинамических и органических систем земледелия, систем низкозатратного устойчивого сельского хозяйства, а также разработанных отечественными учеными адаптивных систем сельского хозяйства, пропагандировать системы экологизации сельского хозяйства

• К концу XX века одним из рациональных направлений, по развитию устойчивых систем в агропромышленном секторе экономики многих стран, оказалось внедрение в практику землепользования биотехнологий, частичной замены химических мелиорантов, пестицидов, агрохимикатов биологическими препаратами.



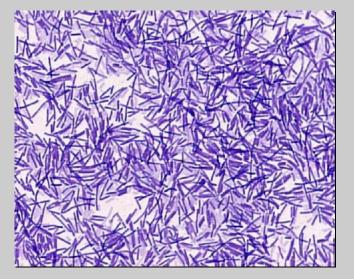




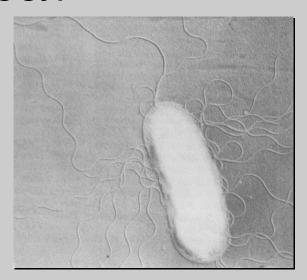
Совместимость с современными агротехнологиями

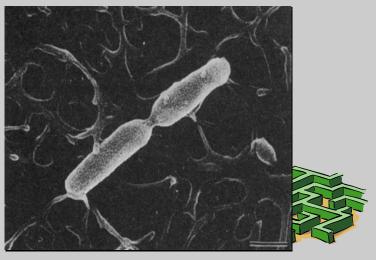
Комплексное действие

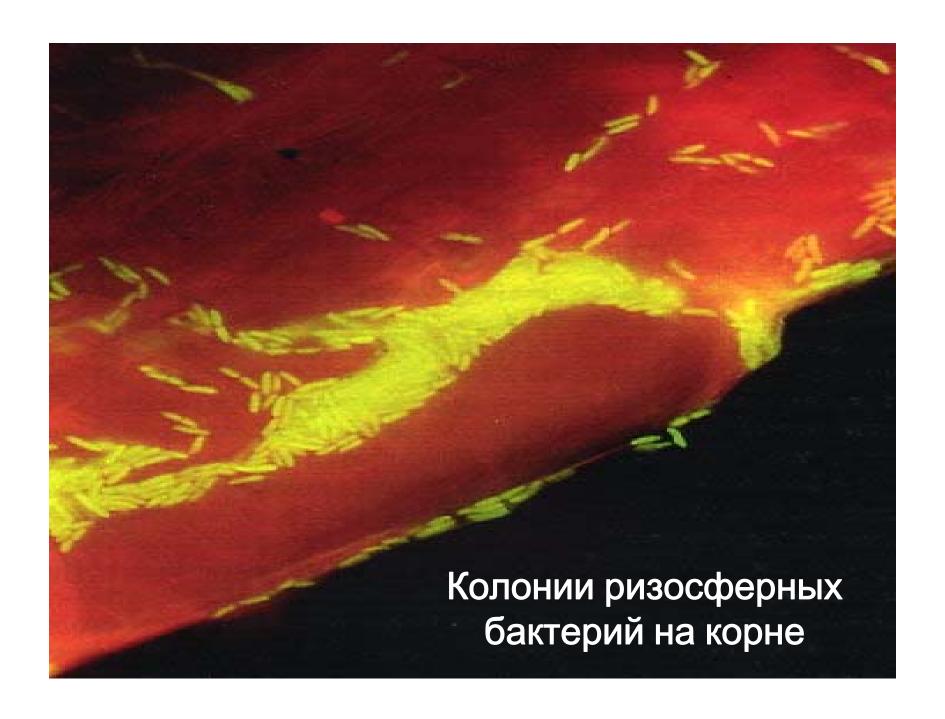
Высокая эффективность

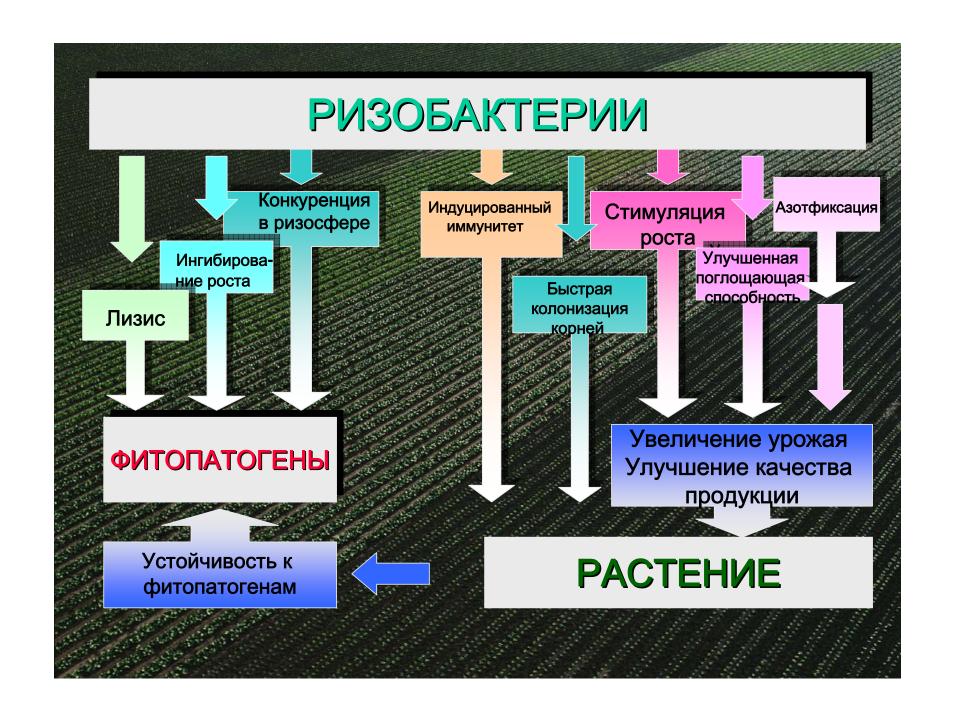

Широкий спектр действия на основные сельскохозяйственные культуры

Безопасность для окружающей среды


### Микробиологические препараты комплексного действия


- Экстрасол микробиологическое удобрение, применяется в растениеводстве для повышения урожайности различных с/х культур, оказывает антистрессовое влияние, позволяет снизить нормы внесения минеральных удобрений на 30-40%
- БисолбиСан фунгицид, протравитель семян озимой и яровой пшеницы, применяется для борьбы с корневыми гнилями растений
- БисолбиМикс комплексное микробиологическое удобрение, содержащее грибы арбускулярной микоризы, способствующие улучшению минерального питания растений, клубеньковые и ризосферные бактерии, обладающие комплексом полезных свойств для бобовых и небобовых растений.


### МИКРОБИОЛОГИЧЕСКОЕ УДОБРЕНИЕ ЭКСТРАСОЛ














# Фунгицидная активность ризобактерий

|                                 |                             | Зона ингибирования , мм    |                      |                           |                |  |  |
|---------------------------------|-----------------------------|----------------------------|----------------------|---------------------------|----------------|--|--|
| Штамм<br>проду-<br>цент         | Phyto-<br>phtora<br>capsici | Rhizo-<br>ctonia<br>solani | Fusarium<br>culmorum | Fusarium<br><b>SOlani</b> | Pythium<br>sp. |  |  |
| Bacillus<br>spp.                | 23.7±0.7                    | 27.7±1.3                   | 23.7±2.7             | 21.0±1.0                  | 20.0±1.0       |  |  |
| Bacillus<br>subtilis            | 26.0±1.0                    | 30.7±1.7                   | 34.0±7.0             | 23.7±1.7                  | 14.3±4.3       |  |  |
| Pseudo-<br>monas<br>fluorescens | 49.3±6.3                    | 25.7±1.3                   | 20.7±0.3             | 15.7±7.3                  | 57.3±6.3       |  |  |

#### Бактерицидная активность ризобактерий Зона ингибирования, мм Erwinia Clavi-Pseudo-Pseudo-Erwinia Штамм carotocarotobacter monas monas продуmichisyringiae syringiae vora vora 8300 2314 3391 **A-1** ganense цент 17-1 19.3±1.5 16.5±1.3 Bacillus 38.1±3.2 22.7±1.9 30.7±2.6 spp. 27.1±2.0 28.3±2.2 Bacillus 26.3±2.3 18.7±1.5 32.3±3.0 subtilis Pseudo-56.0±4.9 46.0±3.7 50.3±4.7 47.0±4.2 16.7±1.5 monas fluorescens

#### Ростстимулирующая активность ризобактерий Стимуляция роста проростков кукурузы, Штамм % к контролю продуцент 1:100 1:50 1:1 разведение разведение разведение Bacillus +21.3 -10.4 +8.7 spp. Bacillus -20.5 +26.3 +11.1 subtilis **Pseudomonas** -18.7 +13.0 +26.0fluorescens

## Эффективность Экстрасола на зерновых культурах в России

| Регион                    | Культура,<br>Сорт              | Урожай<br>при<br>обработке<br>ц/га | Урожай<br>контроль | Прибавка к<br>контролю |      |
|---------------------------|--------------------------------|------------------------------------|--------------------|------------------------|------|
| LEIMOH                    |                                |                                    | ц/га               | ц/га                   | %    |
| Северная<br>Осетия,Кавказ | Озимая<br>пшеница<br>с. Победа | 35.0                               | 28.0               | 7.0                    | 25.0 |
| Татарстан,<br>Урал        | Яровая<br>пшеница,<br>с.Лада   | 35.6                               | 30.3               | 5.3                    | 17.5 |
| Татарстан,<br>Урал        | Яровая пшеница,<br>с.Приокская | 56.0                               | 48.3               | 7.7                    | 15.9 |
| Санкт-Петербург           | Озимая<br>пшеница,<br>с.Инна   | 50.2                               | 30.4               | 19.8                   | 65.6 |
| Санкт-Петербург           | Ячмень,<br>с.Боррус            | 57.1                               | 33.5               | 23.6                   | 70.4 |

## Влияние применения биопрепаратов на качество зерна пшеницы

| Регион                         | Культура,<br>сорт             | Клейковина<br>при<br>обработке, <sup>0</sup> ∕₀ | Клейковина<br>на контроле,<br><sup>0</sup> ⁄0 | Прибавка к<br>контролю<br>% |
|--------------------------------|-------------------------------|-------------------------------------------------|-----------------------------------------------|-----------------------------|
| Северна<br>я Осетия,<br>Кавказ | Озимая<br>пшеница<br>с.Победа | 41.0                                            | 35.0                                          | 6.0                         |
| Татарстан<br>Урал              | Яровая<br>пшеница,<br>с.Лада  | 25.0                                            | 21.0                                          | 4.0                         |
| Краснодар<br>Кавказ            | Озимая<br>пшеница<br>с.Лира   | 23.4                                            | 20.5                                          | 2.9                         |

## Эффективность Экстрасола на овощных культурах в России

| Регион              | Культура,<br>сорт                    | Урожай при<br>обработке<br>т/га | Урожай<br>контроль | Прибавка к<br>контролю |      |
|---------------------|--------------------------------------|---------------------------------|--------------------|------------------------|------|
|                     |                                      |                                 | т/га               | т/га                   | %    |
| Санкт-<br>Петербург | Свекла,<br>с.Пабло                   | 32.6                            | 29.1               | 3.5                    | 12.0 |
| Татарстан,<br>Урал  | Сахарная<br>свекла,<br>с.Романовская | 24.0                            | 20.0               | 4.0                    | 20.0 |
| Санкт-<br>Петербург | Капуста<br>белокачанная,<br>сСардон  | 137.3                           | 122.0              | 15.3                   | 12.5 |

- Средняя эффективность Экстрасола составляет:
- на зерновых культурах: 14-30%, при увеличении клейковины зерна пшеницы на 2-4%
- на технических культурах: 14-28% %, при увеличении содержания масла на 1-3%, сахара на 2-5%
- на овощных культурах: 11-20%, при снижении содержания нитратов и увеличения содержания витаминов и сахаров

- БисолбиСан фунгицид, протравитель семян озимой и яровой пшеницы, применяется для борьбы с корневыми гнилями растенийэ
- БисолбиСан совместим в баковых смесях с фунгицидами (кроме медьсодержащих препаратов), инсектицидами, гербицидами и удобрениями.



Как показали результаты полевых опытов, проведенные ВНИИ фитопатологии и региональными станциями защиты растений, при использовании БисолбиСана совместно с протравителями семян и фунгицидами можно снизить дозу пестицидов в два-три раза без снижения биологической эффективности действия препаратов. Более того, совместное использование биологических и химических протравителей в половинной дозе от рекомендуемого, было более эффективным чем использование каждого препарата в отдельности.



# Биологическая эффективность протравителей семян на яровой пшенице с.Приокская

| Протравитель      | Доза,<br>л/т,<br>кг/т | Корневые      | Биологичес     |                             |
|-------------------|-----------------------|---------------|----------------|-----------------------------|
| Протравитель      |                       | Развитие<br>% | Поражен<br>ие% | кая<br>эффективн<br>ость, % |
| Контроль          |                       | 43.5          | 10.9           |                             |
| Премис-200        | 0.2                   | 4.9           | 1.2            | 89.0                        |
| Феразим           | 1.2                   | 8.3           | 2.1            | 80.7                        |
| Колфуго<br>дуплет | 2.5                   | 10.0          | 2.5            | 77.1                        |
| БисолбиСан        | 1.0                   | 9.1           | 2.3            | 78.9                        |

В ВНИИСХМ разработана технологическая схема производства комплексного микробиологического удобрения БисолбиМикс, содержащего грибы арбускулярной микоризы, клубеньковые и полезные ассоциативные ризобактерии



### Схема опыта БисолбиМикс с яровой пшеницей с.Приокская в Ивановской ГСХА

• Контроль

**N45**P30K45 – фон

• без удобрений

Дефекат 250 кг/га

Дефекат 500 кг/га

Дефекат 1000 кг/га

КМУ 250 кг/га

КМУ 500 кг/га

КМУ 1000 кг/га

Фон + дефекат 250 кг/га

Фон + дефекат 500 кг/га

Фон + дефекат 1000 кг/га

Фон + КМУ 250 кг/га

Фон + КМУ 500 кг/га

Фон + КМУ 1000 кг/га



### Урожай зерна яровой пшеницы с.Приокская

| Вариант                    | Урожай зерна,<br>ц/га | Прибавка урожая,<br>ц/га |        |  |
|----------------------------|-----------------------|--------------------------|--------|--|
| <b>Бариан</b> 1            | ц/1 а                 | к контролю               | от КМУ |  |
| 1. Контроль<br>б/удобрений | 10.4                  | -                        | -      |  |
| 1. Дефекат 250 кг/га       | 10.5                  | +0.1                     | -      |  |
| 1. Дефекат 500 кг/га       | 10.5                  | +0.1                     | -      |  |
| 1. Дефекат 1000 кг/га      | 11.3                  | +0.9                     | -      |  |
| 1. КМУ 250 кг/га           | 10.9                  | +0.5                     | +0.4   |  |
| 1. КМУ 500 кг/га           | 11.7                  | +1.3*                    | +1,2   |  |
| 1. КМУ 1000 кг/га          | 12.8                  | +2.4*                    | +1,5   |  |
| HCP <sub>05</sub>          |                       | 1,2                      |        |  |

#### Урожай зерна яровой пшеницы с.Приокская

| Вариант                     | Урожай         | Прибавка урожая,<br>ц/га |        |                |        |
|-----------------------------|----------------|--------------------------|--------|----------------|--------|
| Бариант                     | зерна,<br>ц/га | к<br>контролю            | от NPK | от<br>дефеката | от КМУ |
| Контроль б/удобрений        | 10.4           | -                        | -      | -              | -      |
| $N_{45}P_{30}K_{45}$ — фон  | 22.4           | +12.0                    | -      | -              | -      |
| Фон + дефекат 250 кг/га     | 22.0           | 11.6                     | +12.0  | -0.4           |        |
| Фон + дефекат 500 кг/га     | 22.2           | 11.8                     | +12.0  | -0.2           |        |
| Фон + дефекат 1000<br>кг/га | 23.8           | 13.4                     | +12.0  | +1.4           |        |
| Фон + КМУ 250 кг/га         | 24.4           | 14.0                     | +12.0  | -              | +2.0   |
| Фон + КМУ 500 кг/га         | 25.0           | 14.6                     | +12.0  | -              | +2.6   |
| Фон + КМУ 1000 кг/га        | 26.3           | 15.9                     | +12.0  | +1.4           | +2.5   |
| HCP <sub>05</sub>           |                | 1.2                      |        |                |        |

 Таким образом, представленные результаты работы ВНИИ с/х микробиологии показывают, что ученые на сегодняшний день могут предложить сельхозпроизводителям широкий ассортимент микробиологических препаратов и удобрений различного назначения при выращивании основных с/х культур в различных почвенно-климатических условиях с целью усиления биологической составляющей агрофитоценозов и получения экологически безопасной, высококачественной и конкурентоспособной продукции с высокими потребительскими свойствами и длительными сроками хранения.

### Благодарю за внимание!

